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Abstract

Background: In the needle biopsy, the respiratory motion causes the displacement

of thoracic–abdominal soft tissues, which brings great difficulty to accurate locali-

zation. Based on internal target motion and external marker motion, the existing

methods need to establish a correlation model or a prediction model to compensate

the respiratory movement, which can hardly achieve required accuracy in clinic use

due to the complexity of the internal tissue motion.

Methods: In order to improve the tracking accuracy and reduce the number of

models, we propose a framework for target localization based on long short‐term

memory (LSTM) method. Combined with the correlation model and the prediction

model by using LSTM, we adopted the principal component of time‐series features

of external surrogate signals to predict the trajectory of the internal tumour target.

Additionally, based on the electromagnetic tracking system and Universal Robots 3

robotic arm, we applied the proposed approach to a prototype of robotic puncture

system for real‐time tumour tracking.

Results: To verify the proposed method, experiments on both public datasets and

customized motion phantom for respiratory simulation were performed. In the

public dataset study, an average mean absolute error, and an average root‐mean‐
square error of predictive results of 0.44 and 0.58 mm were achieved, respectively.

In the motion phantom study, an average root mean square of puncturing error

resulted in 0.65 mm.

Conclusion: The experimental results demonstrate the proposed method improves

the accuracy of target localization during respiratory movement and appeals the

potentials applying to clinical application.
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1 | INTRODUCTION

Recently, lung cancer has become the leading cancer killer worldwide,

accounting for the largest number of deaths.1 Due to a characteristi-

cally long latency period, it is difficult to be detected at an early stage.

The common diagnosis method is CT‐guided percutaneous biopsy.

However, influenced by respiratory motion, patients' organs and tu-

mours have complex three‐dimensional (3D) motions, and the

maximum range of motion can be up to 4.0 cm.2 In order to accurately

locate the internal lesion, surgeons require taking intraoperative CT

verification multiple times. However, the increased radiation dose

exerts a detrimental effect on patient's health. Thus, efforts addressed

on respiratory compensation and respiratory tracking to improve the

accuracy of target localization. Lee et al. developed a respiratory mo-

tion reduction device,3 but it is difficult to achieve precise duplicate

positioning in the course of surgery. Based on 4D CT, it has led to major

advances in the respiratory movement modelling.4 Unfortunately, the

radiation dose is extremely high. With the development of synchronous

respiratory tracking technology in the radiotherapy, the Cyberknife,5,6

which is a direct soft tissue tracking method, improves the accuracy of

tumour localization. It establishes a correlation motion model between

internal target recorded by a bi‐planar x‐ray system and external op-

tical markers, such as a linear or polynomial model. In order to further

improve tracking accuracy, quite a few efforts have been addressed.

In the studies of correlation model, Floris et al. placed gold fiducials

into the swine's livers and multiple LEDs on the swine's chest. They

established a model based on ε‐SVR (support vector regression) to

investigate the correlation of the external signal to the motion of the

liver.7 After that, Floris kept on using the optical markers and the ul-

trasound station to acquire the external data and internal measured

data of the human body, respectively. He correlated the external data

to the principal component of the internal data, and resulted a root

mean square (RMS) of 1.29 mm.8 Matteo et al. established an artificial

neural network model for each of three markers on patients' skin to

estimate the tumour motion.9 The model was checked and updated

periodically when the prediction error increased. Dou et al. took the

sensor noise and the model error into consideration, and proposed a

correlation model based on unscented transformation (UT) to reduce

the uncertainty in the modelling process.10

In the studies of prediction model, Hong et al. applied the Kalman

filter method to make an optimal estimation of the input data based

on the state transition equations.11 In order to attain regularity of

breathing signals, Sun et al. proposed a neural network using adap-

tive augmentation and multilayer perceptions.12 Wang et al. applied a

seven‐layer bidirectional long short‐term memory (bi‐LSTM) to pre-

dict the respiration motion for external surrogate signals.13

Based on internal target motion and external marker motion, the

existing methods need to establish a correlation model or a prediction

model to compensate the respiratory movement, which can hardly

achieve required accuracy in clinic use due to the complexity of the

internal tissue motion. A prediction model predicts the next position

for external data. And a correlation model correlates the external data

to the internal data at the same time point. For real‐time free‐breath

target localization, the correlation model plays a more significant role

than a prediction model.12 Considering the characteristics of time se-

ries of internal/external motion, we propose a framework that com-

bines the above two models by using LSTM. Our method adopted

historical external surrogate signals to predict the trajectory of the

internal tumour target at the next moment directly to improve the

tracking accuracy. Then, based on the electromagnetic tracking system

F I GUR E 1 The proposed framework for target localization based on LSTM in robotic puncture system. EMT, electromagnetic tracking
system; LSTM, long short‐term memory
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(EMT) and Universal Robots 3 and (UR3) robot arm, we applied the

proposed approach to a prototype of the robotic puncture system,

which functions of image reconstruction, puncture path planning,

robot controlling, multi‐coordinate registration and real‐time free‐
breath tumour tracking. The puncture robot can automatically adjust

the needle insertion pose and subsequently target the tumor's move-

ment in an improved accuracy during the free regular respiratory

guided by our proposed method as shown in Figure 1.

2 | MATERIALS AND METHODS

2.1 | The prediction method based on LSTM

Since respiration is a periodic motion, external surrogate signals and

the internal tumour target, respectively, constitute time‐series data.

The recurrent neural networks (RNNs) have been proven to be a

powerful tool in solving the problem of time series.14 Unlike tradi-

tional algorithms in machine learning, it does not require manually

extracting features from the dataset, but adopts the back propaga-

tion mechanism to adjust internal parameters by itself. Therefore,

RNN has been widely applied in many fields, such as glucose pre-

diction15 and vehicle trajectory prediction.16

RNN adopts a recursive method by using the network's own

recurrent structure to record historical data. The hidden layers of the

RNN are interconnected, and the weights of each node at different

times are shared. Therefore, the output of the current network node

depends on the current input and the output of the hidden layer at

the previous moment. Figure 2a shows the internal structure of RNN,

and Figure 2b shows the structure of RNN unfolded on the timeline.

With the continuous development of RNN, other forms such as

BiRNN17 and LSTM18,19 are gradually derived.

Bidirectional recurrent neural network (Bi‐RNN) is an enhanced

version of RNN. Since in many practical tasks, such as semantic analysis,

the understanding of the current word does not depend on only the

word that appeared before, but also closely related to the word that

follows it. Bi‐RNN appears to ensure that the context information of

the current network nodes can be taken into account when processing

data. As shown in Figure 3, Bi‐RNN has the superposition hidden layer

of the forward RNN layer and the backward RNN layer based on the

original RNN. The common characteristics of historical information and

future information are applied together at the output layer.

However, with the increase of the distance between the

relevant information and the current prediction node, the tradi-

tional RNN will cause the gradient disappearance or the gradient

explosion in the training process due to the increase in the num-

ber of layers in the network. As shown in Figure 2, the chain

structure of the RNN has a repetitive and monotonous neural

network module, such as a simple tangent layer. Therefore, LSTM

adopts the unit to replace the hidden nodes in the traditional

RNN, so as to analyse the data features with context dependence

and solve the problem of updating failure after gradient trans-

mission, as shown in Figure 4.

For effective regulation, an LSTM unit includes a cell and three

gates (an input gate, an output gate and a forget gate). When the data

is transferred to an LSTM unit, it is processed according to the

following algorithm.

2.2 | The algorithm of an LSTM unit

As shown in Figure 4, xt、Ct and ht , respectively, represent the vector

of input, cell state and output gate's activation at time t.

2.2.1 | Step 1

The forget gate determines the retention of the vector at the last

moment. The vector ft of the forget gate can be expressed as

ft ¼ σðWf ⋅ ½ht−1; xt� þ bfÞσ ∈ ð0;1Þ ð1Þ

where ½ht−1; xt� is a vector from the concatenation of ht−1 and xt , Wf

and bf are the corresponding weight matrices and bias vector pa-

rameters, and σ is the sigmoid function.

2.2.2 | Step 2

The input gate is used to decide which information is going to be

updated, which is affected by the current input vector and the pre-

vious output vector. Assume that Wi and bi are the corresponding

weight matrices and bias vector parameters, the vector it of the input

gate can be expressed as

F I GUR E 2 The structure diagram of
recurrent neural network. The ω1 is input‐to‐
hidden layer weight matrix. The ω2 is the weight
matrix between hidden layers. And the ω3 is
hidden‐to‐output layer weight matrix
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it ¼ σðWi ⋅ ½ht−1; xt� þ biÞσ ∈ ð0;1Þ ð2Þ

2.2.3 | Step 3

The candidate cell state Ct∗ is calculated by tanh for ht−1 and xt . WC

and bC are the corresponding weight matrices and bias vector

parameters:

Ct∗ ¼ tanhðWC ⋅ ½ht−1; xt� þ bCÞ ð3Þ

2.2.4 | Step 4

The current cell state is determined by the old state Ct−1 multiplied

by ft , and Ct∗ multiplied by it:

Ct ¼ ft � Ct−1 þ it � Ct∗ ð4Þ

where � is the pointwise multiplication.

2.2.5 | Step 5

The vector ot of the output gate is determined by ht−1 and xt, and Wo

bo are the corresponding weight matrices and bias vector

parameters:

ot ¼ σðWo ⋅ ½ht−1; xt� þ boÞσ ∈ ð0;1Þ ð5Þ

2.2.6 | Step 6

According to formulae (4) and (5), we can obtain the output vector of

an LSTM unit by the output gate and the cell state:

ht ¼ ot � tanhðCtÞ ð6Þ

Because RNN has good characteristics of time‐series prediction,

we propose a framework based on LSTM for respiratory motion

tracking. We adopt the memory capability of LSTM for data analysis

and processing to extract the complex mapping features of time se-

ries data.

Assume that external surrogate signals and the corresponding

trajectory of the internal tumour target is Xi:j ¼ ½Xi; Xiþ1;

…; Xj−1; Xj�
T , Y i:j ¼ ½Yi; Yiþ1; …; Yj−1; Yj�

T , respectively, from time i

to j, where Xi = ½Xið0Þ; Xið1Þ; Xið2Þ�T , Yi = ½Yið0Þ; Yið1Þ; Yið2Þ�T . In order

to further explore the correlation relationship between them, we use

principal component analysis20 to reduce the dimensions of Xi:j and

Y i:j , respectively, to 1D principal component Xi:j0 ¼½Xi 0; Xiþ1
0; … ;Xj 0�

T

and Y i:j0 ¼½Yi 0; Yiþ1
0 ; … ;Yj 0�

T . Assume that the size of a sliding window

for the time‐series prediction is k (k < j − i þ 1), the prediction algo-

rithm based on LSTM is shown in Figure 5. The model structure is

mainly composed of LSTM network layer and fully connected layer.

Taking example for predicting Yiþk0 from Xi:iþk−1
0 , the input of the al-

gorithm is Xi:j−1
∗ ¼½Xi:iþk−1

0 ; Xiþ1:iþk
0 ; … ;Xj−k:j−1

0 �, and the expected

output is Y iþk:j∗ ½Yiþk0 ; Yiþkþ1
0 ; … ;Yj 0�

T . After continuous iterative

training, the prediction algorithm has the characteristics of accu-

rately predicting for trajectory of the internal tumour target

gradually.

2.3 | Robotic puncture system

2.3.1 | EMT and UR3

EMT is a spatial measurement system, which is used to track surgical

tools with the sensor coils intraoperatively. We adopted a planar field

generator, NDI aurora system21 which is from Northern Digital Inc.,

Canada.

UR3 is a well‐known 6‐DoF (degree‐of‐freedom) robotic

manipulator manufactured by Universal Robots company in

Denmark. It has a series of advantages, such as easy programming,

fast set‐up, flexible deployment, collaborative and safe.22 Besides, the

accuracy of its end effector is ±0.1 mm, which can meet the

F I GUR E 3 The structure diagram of bidirectional recurrent

neural network. The ω1, ω3, ω4 and ω6 represent the weight matrix
of input‐to‐forward layer, input‐to‐backward layer, forward‐to‐
output layer and backward‐to‐output layer, respectively. And the

ω2 and ω5 represent the weight matrix of forward layers and
backward layers, respectively

F I GUR E 4 The architecture of a long short‐term memory unit.
The f, i and o are, respectively, the forget gate, input gate and
output gate. And x, C*, C and h, respectively, represent the vector
of input, candidate cell state, cell state and output gate's activation
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requirements of surgery. Using the script provided by its official

manual, we can easily control UR3. Combined with the puncture

surgery scene, we processed on the basis of the UR3. We adopted

polysulphide (thermoplastic resin) to make a lightweight, equal‐tor-

que and partially hollow support rod, which was fixed to the flange of

the end effector in Figure 6. It can provide a fixed place for the

puncture needle and is beneficial to prevent metal parts inside the

UR3 from interfering with the magnetic field area. A 5‐DoF sensor

was embedded in the tip of the needle and calibrated to the tool

centre point in UR3 for tracking by EMT.

2.3.2 | Multi‐coordinate registration

In order to determine the pose of the robot for puncturing, we reg-

ister image reconstruction coordinate, electromagnetic coordinate

and UR coordinate using point‐based registration.23

First, the image reconstruction coordinate and the electro-

magnetic coordinate are registered to get the spatial transformation

matrix TMag←CT. These landmarks were fixed on where respiratory

movement is not significant to avoid the effect of respiration mo-

tion, such as the sides of the ribs. Similarly, the matrix TUR←Mag is

determined in electromagnetic coordinate and UR coordinate sys-

tem. Because the phantom is placed in the best measuring volume

of magnetic field, to avoid the influence of location and spatial

extend, registration points around the model were collected by UR

arm with a sensor attached in advance. Thus, the transform rela-

tionship from image coordinate to UR coordinate can be expressed

as follows:

PUR ¼ TUR←MagTMag←CTPCT ð7Þ

3 | EXPERIMENTAL RESULTS

To verify the performance of the proposed method, two kinds of

experiments were performed. First, the proposed method was

applied on public datasets and compared with existing methods.

Then, with the developed robotic puncture system, simulation

experiments were carried out on a customized respiratory motion

simulation phantom. The software system is built in a visual studio

2015 with open‐source visualization toolkits and libraries: vtk7.1

(vtk.org), Qt5.10 (www.qt.io) and keras2.2 (keras.io). And the

computing devices were a workstation with Intel® Xeon(R)CPU E5‐
2620 v3, TITAN X Pascal GPU and a laptop with Intel® Core(TM)i5‐
9300H CPU, GTX 1650.

Mean absolute error (MAE) and root‐mean‐square error (RMSE)

were introduced for evaluating the prediction method. RMS and TRE

(target registration error) were introduced for the error measure-

ment of coordinate registration.24 RMS was introduced for assessing

the accuracy of the target puncturing.

3.1 | The verification of the LSTM method

To evaluate the performance of the proposed LSTM prediction

method, a public dataset25,26 from the Institute of Robotics and

Cognitive Systems, Lubeck University, Germany, which includes

seven male patients aged between 23 and 30, was adopted. The

dataset contains bimodal respiratory motion traces, one of which is

an optical marker placed on the patient's chest, and the other is a

vessel bifurcation recorded by 4D ultrasound with 17.5–21.3 Hz

sampling. The recording length of each subject ranges from 6433 to

8169, with a total of 50 344. We removed outliers, intercepted the

stable part and smoothed the data by Savitzky–Golay algorithm.27 In

order to eliminate the difference between external surrogate signals

and the trajectory of the internal tumour target in the bimodal

properties, we normalized the data with z‐score to ensure that the

F I GUR E 5 The prediction algorithm based on long short‐term memory

F I GUR E 6 The extended end‐effector of Universal Robots 3
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gradient of LSTM moved towards the minimum value and improved

the convergence speed of model training. Then, we got the length of

the time series for each subject ranging from 3548 to 7862, with a

total of 40 200. Due to the specificity of each sample, we adopted

60% of each patient dataset (87 respiratory cycles) as the training

set, 20% (29 respiratory cycles) as the validation set, and 20% (29

respiratory cycles) as the test set. The basic super parameters of the

network model were determined by the whole group training data as

follows: the optimizer, the learning rate, the batch size and the epoch

were Adam, 0.001, 512 and 100, respectively. Then, the prediction

performance under different sliding window sizes and LSTM layers

was analysed.

First, we set the size of different sliding window of LSTM, which

was represented by a line chart in Figure 7a. The abscissa repre-

sented the size of sliding window from 10 to 50 in 10‐step in-

crements each time, and the ordinate represented the prediction

accuracy of the target in the test set. With the increase of the size of

sliding window, the MAE and RMSE showed a trend of first

decreasing and then increasing. Therefore, the best prediction ac-

curacy can be obtained by selecting a size of sliding window of 30 for

historical data in LSTM.

Second, we set the number of different layers of LSTM, which was

represented by a line chart in Figure 7b. The abscissa represented the

number of LSTM layer from one to five and the ordinate represented

the prediction accuracy of the target in the test set. With the increase

of the number of layers, the structure of LSTM became more and

more complex. However, the MAE and RMSE did not decrease

accordingly, but had an increasing trend. Therefore, the best predic-

tion accuracy can be obtained by selecting a one‐layer LSTM.

As shown in Table 1, the average MAE achieved 0.44 mm when

the average RMSE was 0.58 mm. As an example, we randomly

selected the predicted and actual values of more than 900 consec-

utive pairs of the internal tumour target for a single subject, as shown

in Figure 8a. The abscissa represented the number of data points, and

the ordinate represented the amplitude of each point. The red

sequence represented the true values, and the blue sequence

represented the predicted values. It reveals that the target motion

tracking method based on LSTM has better prediction accuracy.

We also compared with other RNN methods, such as BiLSTM,28

GRU29 and BiGRU.30 On the premise that the best parameters

obtained from the above discussion (one layer, the size of sliding

window is 30) were selected, we performed on the same test set, and

the results were shown in Figure 8b. The ordinate represented the

prediction accuracy of the target in the test set. It reveals the LSTM

is superior to other RNN methods in the effect of prediction accu-

racy, which achieves the best accuracy of prediction.

In order to further verify the accuracy of the method proposed in

this paper, we compared with ε‐SVR8 proposed by Floris who

provided the public datasets. Because of the evaluation of the

predicted value of the principal component of the target, the RMS

adopted by Floris in the experiment was the same as the RMSE

adopted here. As shown in Table 2, it reveals that our method is

significantly improved in accuracy and robustness.

3.2 | The verification of target puncturing

In order to further simulate the thoracic–abdominal movement of

human respiration, we built a respiratory movement simulation

phantom. It consisted of an air compressor, a solenoid valve, a

throttle valve, a multi‐channel USB relay and an improved human

skeleton model (including two reservoir bags), as shown in Figure 9.

The air compressor was responsible for supplying air to the respi-

ratory movement phantom. The solenoid valve was mainly used to

control the three states of inhalation, deflation and breath holding.

The throttle valve was used to regulate the air flow speed of

F I GUR E 7 (A) The prediction performance under different sliding window sizes. (B) The prediction performance under different long
short‐term memory layers

TAB L E 1 The prediction average error of the target for the
test set

MAE (mm) RMSE (mm)

0.44 0.58

Abbreviations: MAE, mean absolute error; RMSE, root‐mean‐square

error.
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inhalation and exhalation. The multi‐channel USB relay was used to

simulate the normal respiratory movement of human body. Addi-

tionally, NDI authorized sensor markers were applied in the experi-

ments. Four fiducial landmarks (M1–M4) were applied on the surface

of the respiration motion model. An abdominal marker (M5) was used

to record external surrogate signals. And another marker (M6) which

is regarded as the target was fixed inside the phantom (the upper side

of the reservoir bag). We adopted the position of M6 and that of the

sensor embedded in the tip of the inserted needle to assess accuracy

RMS after completing the insertion. We scanned the model with CT

at the end‐inspiratory phase in the university affiliated Renji Hospi-

tal. The image resolution is 512 � 512 � 285, and the spacing is

0.7 mm � 0.7 mm � 1.3 mm.

Applied to the robotic puncture system, we carried out the

puncture experiment on the respiratory motion simulation phantom,

as shown in Figure 10.

In the image coordinate and EMT coordinate, we selected the

corresponding fiducial landmarks. Subsequently, we controlled the

puncture robot to move in the effective range of the EMT, and

recorded four different fiducial landmarks around the model by using

the puncture needle. Thus, we realized the registration of the image

coordinate, the EMT coordinate and the UR coordinate.

According to the target in the image, we selected the suitable

entry point manually and planned the optimal puncture path, as

shown in Figure 11a. And the distance between the entry point and

the target was 61.5 mm. The robot dynamically adjusted the pose of

the needle, and displayed the distance from the needle tip to the

target in real time (as shown in the green area in Figure 11b).

Running the respiration motion phantom to simulate the

thoracic‐abdominal movement, we adopted the principal component

of time‐series features of external surrogate signals to predict the

trajectory of the internal tumour target, and restored the principal

component of predicted value of the target to 3D space position.

Considering that it took time for a robot to complete an instruction,

the refreshing rate of the prediction process and the control com-

mand circle for the UR3 motion control were 1 s. Subsequently, the

puncture needle dynamically tracked the target's movement in the

respiratory movement phantom. The displacement amplitude of the

abdominal marker and target point tracked by EMT were 1.82 and

2.66 cm, respectively. According to optimal puncture planning path,

the puncture robot can finally automatically insert the needle into the

target at the same timing point, as shown in Figure 12.

Using the same path, the experiment was repeated five times,

where the average RMS, TRE of TMag←CT, TUR←Mag were shown in

Table 3, and the RMS of the puncturing error was 0.65 mm.

4 | DISCUSSION

By experimenting with both the public datasets and respiratory

motion simulation phantom, we verify the improved property of the

proposed framework for target localization based on LSTM.

Compared with the methods of establishing a correlation model or a

prediction model based on the external surrogate signals and the

trajectory of the internal tumour target, respectively, our method

comprehensively integrates the correlation model and prediction

model together, which not only reduces the number of models but

also improves tracking accuracy.

The public dataset study verified the performance of the pro-

posed prediction method. Assume that the test set should derive

from the same distribution as training data, they are divided ac-

cording to each patient. And we can determine the value of key pa-

rameters in the framework for respiration prediction. The optimal

size of the sliding window which represents the number of historical

data to make prediction is 30, and the optimal number of LSTM

layers is 1. We compared LSTM with some other RNN networks

including Bi‐LSTM, GRU and Bi‐GRU in the prediction performance

under the same super parameters. The experimental results reveal

F I GUR E 8 (A) Exemplifying predicted values and actual values of the internal tumour target (B) compared with other network methods

TAB L E 2 Comparison of an existing method

Methods MAE (mm) RMSE (mm)

Floris ε‐SVR — 1.29

Our method 0.44 0.58

Abbreviations: MAE, mean absolute error; RMSE, root‐mean‐square

error.
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F I GUR E 9 The respiratory motion simulation phantom

F I GUR E 1 0 The set‐up of the respiration
motion phantom experiment

F I GUR E 1 1 (A) The planned optimal
puncture path was displayed. The green point

and pink point represent the selected entry
point and the target, respectively. (B) Distance
from the needle tip to the target was measured
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that LSTM achieved a higher precision, with an MAE of 0.44 mm and

an RMSE of 0.58 mm. Thus, we adopt LSTM as the framework for

respiratory prediction. Besides, compared with an existing method ε‐
SVR, our method is superior to it with the better characteristics of

fully extracting time‐series data.

In respiratory motion simulation phantom study, the robotic

puncture system can automatically adjust the needle insertion pose,

target the tumour's movement and insert the needle into the target

according to the predicted value. The average RMS of the puncturing

error is 0.65 mm. The accuracy of multi‐coordinate registration has a

positive effect on target localization for reducing puncturing errors.

During the procedure, the needle can bend when it is inserted into

the moving phantom. Because a sensor was embedded in the tip of

the needle, the localization accuracy is not influenced. The robotic

puncture system helps surgeon to be less dependent on experience,

when performing 3D reconstruction of CT scan images for surgical

planning, the angular adjustment of puncture needle, and localization

of the drift target. With its stable mechanical structure, the robotic

puncture system avoids most human factors, such as trembling of

hands, and improves one‐shot success rate.

Since percutaneous surgery is carried out under the precondition

of regular breath which represent most clinical cases, we utilize the

relatively stable part of the public datasets and adopt regular pattern

to simulate respiratory system by air exchange in the moving phan-

tom. Due to the budget limitation, we failed to perform prediction on

more complex respiration motions, such as from regular breathing to

irregular breathing caused by coughing and sneezing. In addition, it is

also necessary to consider the differences of respiratory movement

caused by people from different age or sex groups and operating

positions. Besides, the safety protection of the puncture robot should

be taken into account. We realize that the robotic arm can encounter

the phantom sometimes and the series manipulator has a large angle

deflection in the minor range of motion, which is likely to cause

damage to the phantom. Thus, it is necessary to monitor the move-

ment path of UR3 and avoid the risk of operation. When the system

function is improved, the accuracy of the method will be further

verified through animal experiments.

5 | CONCLUSION

Focusing on the drift in targeting position during the procedure,

we proposed a framework for target localization based on LSTM.

We combine the correlation model and the prediction model by

using LSTM, and adopt the principal component of time‐series

features of external surrogate signals to predict the trajectory of

the internal tumour target, which is validated in public datasets.

Additionally, based on the UR3 robot arm and EMT, we applied

the proposed approach to a prototype of robotic puncture system

for real‐time free‐breath tumour tracking. The system is tested on

customized motion phantom, which achieved a better accuracy of

target localization and appealed the potentials applying to clinical

application. As the future work, we will continue to increase the

accuracy and the robustness of the proposed method on more

F I GUR E 1 2 The result of target
puncturing. The green point and blue point

represent the selected entry point and the
target at which the needle reaches, respectively

TAB L E 3 Average errors of target localization in the respiratory motion phantom

Number of times TMag←CT RMS (mm) TMag←CT TRE (mm) TUR←Mag RMS (mm) TUR←Mag TRE (mm) Puncturing RMS (mm)

1 0.73 1.21 0.21 0.32 0.56

2 0.91 1.54 0.42 0.55 0.72

3 0.88 1.46 0.34 0.48 0.64

4 0.79 1.39 0.22 0.41 0.59

5 0.98 1.68 0.48 0.59 0.75

Average 0.86 1.46 0.33 0.47 0.65

Abbreviation: RMS, root mean square.
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clinical data and more complex respiration motions. Besides, it is

necessary to improve the functions of the robotic puncture sys-

tem, especially the safety protection, to carry out animal

experiments.
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